
Supplemental Material:

A multi-scale, hybrid simulation of influenza A epidemics
with realistic in-host response

Experimental Data
We used viral load and symptoms data from five randomized, double-blind human vol-
unteer studies conducted between 1995 and 1999 for 84 total individuals infected with
A/Texas/36/91 (H1N1) [1, 2, 3, 4, 5]. Of these studies, only one [3] (n=17) does not contain
symptoms data.

Symptoms in the four studies were measured on a 0-3 scale, from absent (0) to severe
(3) for each of the following: muscle aches, fatigue, headache and fever, nasal stuffiness,
earache/pressure, runny nose, sore throat, cough, sneezing, breathing difficulty, myalgia,
fatigue, headache, feverish feeling, hoarseness and chest discomfort. Two studies [1, 5], split
symptoms into 3 categories: systemic, upper and lower respiratory.

It was reported that across all the studies, of the 67 individuals measured for symptoms,
65 experienced at least one symptom. In all studies that measured symptoms, symptom
scores were measured twice a day (hour 0 and hour 12 in each day) and reported at the first
time point in the day (hour 0). For this reason, we use hour 6 as the time point to describe
symptoms.

Table 1: Viral and symptoms data.Weighted averages of viral load and symptoms score
data. Weights are given by number of volunteers in each study. The original data may be
found in the publications: ([1, 2, 3, 4, 5])

time (days) log10 V std time (days) Symptoms std
0 - - 0.25 0.1159 0.1548
1 1.6722 0.5175 1.25 0.2541 0.1290
2 3.1871 0.2709 2.25 0.9121 0.4756
4 2.1691 0.0998 3.25 0.9280 0.4393
3 2.8770 0.1790 4.25 0.6350 0.2377
5 1.5307 0.5602 5.25 0.4552 0.2419
6 0.7798 0.2315 6.25 0.3037 0.1381
7 0.4871 0.2111 7.25 0.1558 0.1181
8 0.1756 0.3463 8.25 0.0899 0.1737

Data abstraction

The viral titers across the five studies ([1, 2, 3, 4, 5]) are all reported in log10TCID50/mL,
and as averages across individuals in the respective studies. Plots of viral load curves show
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that qualitatively they look similar except for variations in the viral magnitude between
studies. Mapping viral load to a measure of infectivity for disease transmission requires
normalization of the viral load, and the important components of the data to capture are
when the viral load increases, peaks, and decreases. To adjust the data, we use mixed-effects
modeling to compute a vertical shift for each data curve (random-effect), assuming that the
distance between each curve is minimized. For each study, we get the shifts in table 2. We
adjusted each curve by the shift and computed weighted means and standard deviations
(fixed-effect) on the shifted data. The mean of the data is the same with and without the
shifts, but the standard deviation is smaller with the shifts and reflects variability between
each study from one mean trajectory.

Table 2: Mixed-effects of viral load data.To average data across five volunteer studies,
we used mixed-effects modeling on viral load data to minimize vertical shifts in data curves
from each study. The random-effect (shifts) are presented below, and the fixed-effects (mean
and standard deviations) are presented in Table 1. We weigh the means by the number of
volunteers in each study.

Study Hayden98 Fritz99 Barroso05 Murphy98 Hayden96
Reference [1] [5] [3] [4] [2]
N 19 8 17 14 26
Random effect 0.4122 -0.1447 -0.3558 0.4108 -0.3225
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Ensemble model trajectories (see Figure 3 in main text) for viral load with each curve re-
adjusted by shift to compare with the original data from the 5 studies: [1, 2, 3, 4, 5]

Parameter Estimation
We write the ODE model for short as ẋ = f(x,α), in which x denotes the vector of state
variables, and α = (α1, α2, ..., α6) is the vector of parameters of the system. The observed
data is denoted by D = (x̄i(tj), σx̄i(tj)), for response i, at time point j, with standard
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deviation σ. Here, 2 is the number of variables we fit data to, and we fit at time points 1 to
8 days (or 1.25 to 8.25 days).

Using the standard assumption that the errors on the data are uncorrelated, random,
and sampled from a Gaussian kernel, the likelihood P (D|α) is computed from the trajectory
x(t;α) of the model as an exponential of the objective value, i.e., as P (D|α) = exp(−C(α)),
given by [6]

C(α) =
2∑

i=1

8∑
j=1

|xi(tj;α)− x̄i(tj)|2

2σ2
xi(tj)

.

Optimal parameter values for the target-cell model for A/Texas/36/91 are reported in
[7], which we use as baseline except we increase the initial inoculum V0 from 1e-5 to 0.01.
We set upper and lower bounds using biological ranges for parameters c, δ, k, and V0 [8], and
3.5 log scales around the baseline values for the additional parameters, with the exception
of the viral production rate p. Preliminary fits showed values of p exploring outside of the
bounds, so we increased the upper bound accordingly.

To sample the Bayesian posterior density P (α|D), we choose to run 4 parallel chains
of length 1,000,000. We choose inverse temperature values of β = (1, 0.5, 0.25, 0.125), and
step size ε = 0.075/

√
β. The step size ε for each chain is chosen so that each chain will

have acceptance ratio (i.e., the ratio of accepted α∗ to the total number of proposed α∗)
approximately equal to 0.23, which has been show to provide optimal convergence speed [9].
Acceptance rates are (0.2475, 0.2479, 0.2546, 0.2797). Average swapping rates, from highest
energy down are (0.3558, 0.3529, 0.4117).

Response surfaces

The computed domain for response surface evaluation is [−0.5, 0.5]× [−0.5, 0.5]. We linearly
mapped input values in [0, 1] to these intervals to use uniform random numbers as input.
These arrays may be evaluated up to 11 days of infection, via:

ŷ = b0 + b1x1 + b2x2 + b3x1x2 + b4x
2
1 + b5x

2
2. (1)

For viral load we have:
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V array =

1.7957 −0.3485 −4.4816 −0.1895 −0.1568 −1.6468
3.2574 0.3007 −1.1052 −0.6959 −0.0630 −2.0984
2.7126 0.8607 −0.2395 −0.4676 −0.0365 0.5058
2.1846 1.4181 −0.2884 −0.2562 −0.1603 0.5260
1.5961 1.9964 −0.3433 −0.2195 −0.0835 0.5198
0.9935 2.5375 −0.4165 −0.2218 0.0490 0.6078
0.4070 3.0739 −0.4965 −0.2629 0.0129 0.6567
−0.1908 3.6330 −0.5486 −0.3169 −0.0335 0.8026
−0.8006 4.2066 −0.6178 −0.3140 −0.0128 0.9302
−1.4123 4.7840 −0.7109 −0.2540 0.0305 0.9870
−2.0198 5.3592 −0.8238 −0.1551 0.0694 0.9632


and for symptoms:

Sarray = 

0.0028 −0.0219 −0.1371 0.0805 0.0065 0.3258
0.6238 0.2043 −1.1329 −0.6542 0.0141 −0.4606
0.8332 0.6492 −0.5557 −0.7593 0.3423 −0.3726
0.6610 0.8267 −0.2723 −0.5517 0.6364 0.2271
0.4482 0.7849 −0.1936 −0.2763 0.7802 0.2816
0.2708 0.6001 −0.1848 −0.2685 0.7596 0.2400
0.1590 0.4117 −0.1449 −0.2353 0.5750 0.2031
0.0922 0.2702 −0.1086 −0.1761 0.4037 0.1516
0.0533 0.1730 −0.0806 −0.1327 0.2722 0.1053
0.0311 0.1088 −0.0582 −0.1003 0.1767 0.0716
0.0181 0.0680 −0.0410 −0.0736 0.1127 0.0488


.

Calibration of the intra-host model in FRED
FRED is an open source, C++ modeling system developed by the University of Pittsburgh
Public Health Dynamics Laboratory in collaboration with the Pittsburgh Supercomputing
Center and the School of Computer Science at Carnegie Mellon University. In Allegheny
County, there are a total of 1,164,879 individuals represented by synthetic computer agents
assigned characteristics and behaviors (age, sex, occupation, household etc.) [10]. We use
data from the synthetic population database, which is a freely available database based on
2005-2009 U.S. census data [11]. The data includes, for each household, a latitude/longitude
coordinate, income, size, and the sex, race, and age of household occupants, representing the
distribution of U.S. households. Allegheny County has 524584 households, with 532 schools,
48703 workplaces, 195 group quarters, and 30583 group quarter residents.
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Contact rates between individuals have assigned probabilities, which are derived from
MIDAS studies from the 1957-58 Asian influenza pandemic: Ferguson et al. [12], Longini et
al. [13], Germann el al. [14] and Halloran et al. 2008 [15], and are summarized in [16]. Each
type of place (Home, School, Work, Neighborhood) is characterized by two sets of scalar
parameters: the number of contacts per infectious person per day, and the probability that
a contact transmits infection.

The number of contact opportunities per place per day are calibrated to obey a “30-70"
rule, which is that 30% of viral transmission occurs in the home, and 70% occurs elsewhere.
These numbers are calibrated as an inverse problem, in which contact opportunities is an
input parameter, and measured so that output epidemics obey the desired transmission
proportions. Our target for a pandemic is a 33% symptomatic attack rate (ARs) with a
global attack rate (AR) of 50%. The 33% clinical attack rate for the baseline emerges
naturally from our symptoms threshold, and the calibration process is further refined to
maintain this ratio.

For the “baseline" within-host model, the transmission rates per person per location per
day are 0.21 in the house, 39.9 in the neighborhood, 1.5 at work, and 13.97 in schools. Over 50
runs, this gives an average of 30.01% transmission in the house, 32.96% in the neighborhood,
24.7% in school and 12.31% at work. For the intra-host model found as default in FRED,
the calibration process is the same, but for Allegheny County these give different rates per
place per day, which are household contacts = 0.20, neighborhood contacts = 42.48, school
contacts = 14.32, and workplace contacts = 1.59.

Within-host model in Reference ABM intra-host model

We describe the within-host assumptions in a reference intra-host model used in ABM stud-
ies, which we call the “reference" model [17, 18]. The reference FRED model is the within-
host model used when FRED is downloaded or used on the website
(http://fred.publichealth.pitt.edu/index.php) in the default mode. In the reference within-
host model in FRED, the number of days of infectiousness and symptoms are selected from
a probability distribution. Each infected agent is either symptomatic or not, based on a
Bernoulli random variable. The infectivity of an agent is assigned one of three values: 0 if
the agent is uninfected, 0.5 if the agent is infected and asymptomatic, or 1.0 if the agent is
infected and symptomatic. An infected agent passes through stages SEIR or SEiR, in which
"I" means infectious and symptomatic, and "i" means infectious and asymptomatic. The
length of these phases is determined from sampling cumulative distribution functions which
are based on continuous distribution functions that approximate an exponential distribution.

The discrete cumulative distribution function for number of days latent (X = days latent)
on the space (0, 1, 2) is given by:

F (X) = P (X ≤ N) = (0, 0.8, 1.0). (2)

The discrete cumulative distribution function for number of days symptomatic or asymp-
tomatic (X = days) on the space (0, 1, ..., 7) is given by:
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F (X) = P (X ≤ N) = (0, 0, 0, 0.3, 0.7, 0.9, 1.0). (3)

The values for symptomaticity use infectivity and are assigned values 0 or 1. Days
incubating are calculated as either the same number as days latent if the individual is symp-
tomatic, or the duration of infectiousness if the individual is asymptomatic. When symp-
tomaticity is 1.0, it dictates an individual’s behavior. For the reference ABM model, the
mean duration of infectivity (4.1 days) and mean latent period (1.2 days) can be evaluated
directly using the discrete probability distributions explicitly used in the model, and give an
average total duration of infection as 5.3 days from inoculation to resolution. We estimate
the basic reproductive rate (R0) as the average number of secondary infections by the initial
100 individuals that are exposed at the beginning of the simulation.

Age-severity models
We use 3 models, both mapping f : age→ [0, 1], where x1 = f(age) is a measure of disease
of severity via evaluation of the response surface for direction 1. Here we describe the 3
models.

Linear model

We assume that individuals with age a1 or younger develop similarly mild infections (x1 = 0)
and those aged a2 or older develop similarly severe infections (x1 = 1):

x1(age) =


0, if age < a1,
age−a1
a2−a1

, if a1 ≤ age ≤ a2,

1, if age > a2.

(4)

We use a1 = 18 and a2 = 65. The value of x1 = 0.5 corresponds to age of 41.5, which is
consistent with the median age of 41 years in Allegheny County. For age ∈ [0, 100] the area
under the curve is 58.5.

‘U’ and ‘W’ curve models

We use mortality data published in Luk et al. [19] to obtain the shapes of the curves. We
assigned each data point to the center point age and connected data points using piece-wise
linear interpolation. We set the first and last points (corresponding to < 1 and > 84 years)
to a value of 1, corresponding to most severe disease, and scaled the interior data points so
that the area under the curves would be 58.5.

For the ‘W’ curve, corresponding to the mortality from the 1918 pandemic, we used a scale
of 1.815/M=7.985e-4, where M is the maximum death toll per 1,000. This gave the normal-
ized values of (1.0000, 0.5743, 0.1408, 0.4647, 0.7942, 0.4439, 0.2783, 0.3055, 0.5167, 0.9430, 1.0000)
across the age ranges < 1, 1− 4, 5− 14, 15− 24, ..., 75− 84, > 84.
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For the ‘U’ curve, we assumed that the last 3 data points are 1, in order to scale in such a
way to preserve internal shape. The scale of 0.0186 (18.25/max data point) gave the required
AUC. The normalized values are (1.0, 0.3352, 0.0745, 0.1117, 0.1117, 0.1862, 0.3911, 0.8194,
1.0, 1.0 , 1.0)

7



References
[1] Hayden F, Fritz R, Lobo M, Alvord W, Strober W, Straus S: Local and systemic

cytokine responses during experimental human influenze A virus infection.
J. Clin. Invest. 1998, 101:643–649.

[2] Hayden F, Treanor J, et al RB: Safety and efficacy of the neuraminidase inhibitor
GG167 in experimental human influenza. J. Am. Med. Ass. 1996, 275:295–299.

[3] Barroso L, Treanor J, Gubareva L, Hayden F: Efficacy and tolerability of the oral
neuraminidase inhibitor peramivir in experimental human influenza: ran-
domized, controlled trials for prophylaxis and treatment. Antiviral Therapy
2005, 10:901–910.

[4] Murphy A, Platts-Mills T, Lobo M, Hayden F: Respiratory nitric oxide levels in
experimental human influenza. Chest 1998, 114:452–456.

[5] Fritz R, Hayden F, Calfee D: Nasal cytokine and chemokine responses in exper-
imental influenza A virus infection: results of a placebo-controlled trial of
intravenous zanamivir treatment. J. Infect. Dis. 1999, 180:586–593.

[6] Gammerman D, Lopas H:Markov chain Monte Carlo stochastic simulation for Bayesian
inference. Boca Raton, FL: Chapman & Hall/CRC, Taylor and Francis Group, 2nd
edition 2006.

[7] Smith A, Perelson A: Influenza A virus infection kinetics: quantitative data and
models. WIREs Syst. Biol. Med. 2010, [http://dx.doi.org/10.1002/WSBM.129].

[8] Smith A, Adler F, McAuley J, Gutenkunst R, Ribeiro R, McCullers J, Perelson A:
Effect of 1918 PB1-F2 Expression on Influenza A virus infection kinetics.
PLoS Computational Biology 2011, 7:e1001081.

[9] Chib S, Greenberg E: Understanding the Metropolis-Hastings algorithm. The
American Statistician 1995, 49(4):327–335.

[10] Cajka J, Cooley P, Wheaton W:Attribute Assignment to a Synthetic Population
in Support of Agent-Based Disease Modeling. Methods report (RTI Press) 2010,
19(1009):1.

[11] Wheaton W: 2005-2009 U.S. Synthetic Population Ver. 2. RTI International.
2012. [https://www.epimodels.org/midas/Rpubsyntdata1.do.].

[12] Ferguson N, Cummings D, Cauchemez S, Fraser C, Riley S, Iamsirithaworn AMS, Burke
DS: Strategies for containing an emerging influenza pandemic in Southeast
Asia. Nature 2005, 437:209–214.

8



[13] Longini I, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings D, Halloran
M: Containing pandemic influenza at the source. Science 2005, 309(5737):1083–
1087.

[14] Germann TC, Kadau K, Longini Jr IM, Macken CA: Mitigation strategies for pan-
demic influenza in the United States. Proceedings of the National Academy of
Sciences 2006, 103(15):5935–5940.

[15] Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DA, Lewis B, Xu S,
Fraser C, Vullikanti A, Germann TC, et al.: Modeling targeted layered contain-
ment of an influenza pandemic in the United States. Proceedings of the National
Academy of Sciences 2008, 105(12):4639–4644.

[16] Cooley P, Brown S, Cajka J, Chasteen B, Ganapathi L, Grefenstette J, Hollingsworth
C, Lee B, Levine B, Wheaton W, et al.: The Role of Subway Travel in an In-
fluenza Epidemic: A New York City Simulation. Journal of Urban Health 2011,
88(5):982–995.

[17] Kumar S, Grefenstette J, Galloway D, Albert S, Burke D: Policies to Reduce In-
fluenza in the Workplace: Impact Assessments Using an Agent-Based Model.
American Journal of Public Health 2013, (0):e1–e6.

[18] Grefenstette JJ, Brown ST, Rosenfeld R, DePasse J, Stone NT, Cooley PC, Wheaton
WD, Fyshe A, Galloway DD, Sriram A, et al.: FRED (A Framework for Recon-
structing Epidemic Dynamics): an open-source software system for model-
ing infectious diseases and control strategies using census-based populations.
BMC public health 2013, 13:940.

[19] Luk J, Gross P, Thompson WW: Observations on mortality during the 1918
influenza pandemic. Clinical Infectious Diseases 2001, 33(8):1375–1378.

9


